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Analytical electron microscopy of multilayered thin films

using microcleavage
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Abstract. Microcleavage transmission electron microscopy (MTEM) has been
applied to the study of many properties of multilayered samples. We illustrate
the unique capabilities of this technique for obtaining a detailed structural
picture of the multilayer in order to study long-range perpendicular thickness
drifts, lateral variations, roughness, substrate quality, adherence, thermal sta-
bility, composition, and crystallinity.

Subject terms: x-ray multilayered optics; multilayeredthin films; microcleavage; electron
microscopy.

Université Aix-Marseille ll|
Departement de Physique

des Interactions Photons-Matiére
Rue Henri Poincaré
13397 Marseille Cedex 13, France

Pierre Dhez

LURE Université de Paris-Sud
91408 Orsay Cedex, France

CONTENTS

. Introduction
2. Technique
2.1. Depth variation
2.2. Lateral variation
2.3. Roughness
2.4, Structures observable
2.5. High resolution
2.6. Chemical mapping by electron energy loss spectroscopy
3. Conclusion
4. Acknowledgments
5. References

1. INTRODUCTION

Interest in soft x-ray optics has been enhanced by recent
developments in synchrotron x-ray beam lines and by pro-
gress in thin-film deposition techniques. For some time, mul-
tilayers have been used as powerful tools for studying interfa-
ces and diffusion,! opening up the possibility of producing
high quality soft x-ray mirrors.2~4 More recently, superlatti-
ces have received renewed attention because of their unique
structural,’ elastic,® and electronic properties.’
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We present here the unique capabilities offered by electron
microscopy, combined with a microcleavage technique devel-
oped earlier,® for studying the structure, crystallinity, adher-
ence, and roughness of multilayers. We present several repre-
sentative examples of which electron microscopy has been
used to study some of the problems outlined above.

The properties of multilayer samples are heavily dependent
on their structural properties. The main nondestructive char-
acterization tool used to date has been x-ray diffraction, espe-
cially for samples in which the layer thickness is less than ~ 100

- As is well known, in x-ray diffraction measurements the
phase information is lost, and therefore these studies rely
heavily on proper structural modeling. In addition, x-ray dif-
fraction generally arises from large volumes of the sample,
therefore providing only an average, nonlocal picture of the
structure.

Electron microscopy, on the other hand, provides informa-
tion that is more local (from a volume ~ 10 to 10? smaller than
in x-ray diffraction). The phase information is not lost until the
image is produced. In addition to the standard diffraction and
imaging techniques, a variety of filtering techniques such as
dark field imaging (DFI).? electron energy loss spectroscopy
(EELS), and high resolution transmission electron micros-
copy (HREM) have been used to obtain a detailed structural
picture of the multilayer. We also have used a hot stage grid
holder to study the temperature stability." To obtain an image
that is easy to interpret, the sample size has to be reduced to
microscopic size (less than 1000 A), which is usually accom-
plished by performing extensive chemical and mechanical
treatment and ion milling. Clearly, all of these sample prepara-
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TABLE I. Systems for which the microcleavage transmission elec-
tron microscopy technique has been applied. Period thicknesses
range from 15 to 300 A, and the total number of bilayers ranges from
1to100. WRe/C, WRe/B, Pb/Ge, and Cu/Siwere prepared using
molecular beam epitaxy: the others were prepared using sputtering.

Multilayer Substrate
High Z Low Z
material material Glass Silicon Other
W, Mo, Ta CorSi X X
Au, Pt
Co, Cr, W C X
WRe alloy
WRe alloy B X
W Si0, Al,O4
Ta Sio, X
MoN AIN X
NbN AlN X
Pb Ge X
Cu Si X

N.B.: The technique has also worked for bilayers with two low Z mate-
rials, such as (Si, Si0;) and (SizNg4, Si0O3).

tion techniques might produce some artifacts that are not
casily controllable.

2. TECHNIQUE

We have successfully used the microcleavage transmission
electron microscopy (MTEM) technique !! to study the struc-
tural properties of a large number of different multilayer
systems (Table I). In this technique, the substrate is scratched
and the multilayer-substrate combination is cleaved along the
scratch. Several microfragments of uncontrolled size and
shape are collected on a microscope grid by rubbing the edge
of the break. Generally, the fragments are wedge shaped, as
shown in Fig. 1(a). To obtain a clean image, the planes of the
layers are aligned parallel to the electron beam, as shown in
the figure. In addition to the direct transmission image, a
diffraction patterncan also be obtained, as shown in Fig. 1(b).
Notice that by proper alignment, diffraction spots from both
the substrate and the multilayer can be obtained so that the
substrate actsas an internal calibration. Animportant advan-
tage of the technique is its simplicity, allowing a quick charac-
terization of the samples, which can be used as feedback
information into the sample-making process.

2.1. Depth variation

Figurc 2(a) shows a direct transmission image (obtained fora
W/ C multilayer (2d =48 A) in combination with the diffrac-
tion pattern[Fig. 2(b)] from the same sample. The spots close
to the direct beam arise from the multilayer, and the further
spot arises from the substrate. In this way, the diffraction
from the substrate provides an internal calibration for the
superlattice diffraction spots.® We should point out that the
image for thin layers can be used to determine only the bilayer,
not the individual layer, thickness. This is because the relative
contrast is dependent on the focusing conditions of the
microscope.

Figure 2(a) shows the bilayer thickness decreasing gradu-
ally toward the left of the figure due to a drift in preparation
condition. This is much harder to deduce from a model-
dependent reconstruction of the structure using x-ray or elec-

Electron beam

Carbon, || Tungsten
,;'5'\\"0-0 ot
T2 | G#F ot CB‘
Multilayer
Si Si 7 - > Si Si

D“l

Fig. 1. (a) Microfragment showing Si substrate, W./C multilayer,
and direction of the electron beam. (b) Idealized diffraction image.
The internal calibration'® comes from d XD = dqy1, XDqq;.

(b}

Fig. 2. (a)Crosssection of aW/C multilayer (2d =48 A). Notice the
gradual decrease in the period toward the left. (b) Electron diffrac-
tion from the sample in (a), showing the effect of this decrease on the
multilayer diffraction spots. The arrow in (a) shows a bifurcation
structure'? that we believe to be only an artifact of the electron
microscopy technique.

tron diffraction techniques, as is clearly seen from the electron
diffraction picture [Fig. 2(b)], where the superlattice peaks
are all merged into a continuous image that makes detailed
modeling of the intensities mandatory. In contrast to diffrac-
tion, MTEM immediately allows the study of long-range
driftsin preparation conditions, as shown fordiode (Fig. 3(a)]
and triode [Fig. 3(b)] sputtering.

2.2. Lateral variation

Because of the finite sizes of the evaporation or sputtering
sources, a lateral variation of the layer thickness may appear
on the sample, as shown by Figs. 4(b) and 4(c), which are
MTEM images of the top and bottom portions of the sample,
respectively. Comparison of these two images shows the
thickness differences between the two portions of the sample.
This variation is also observable in a photographic image of

OPTICAL ENGINEERING / August 1986 / Vol. 25 No. 8 / 949



LEPETRE, SCHULLER, RASIGNI, RIVOIRA, PHILIP, DHEZ

U35 H‘-.. “". o..t.' * e ‘.
. R .. .. o“-..... .‘.' -o. 0..".1‘.-.0‘ L)
25 —— . . . . .
0 20 40 60 80 100
Period number
(a)
30+
.g . g.- -' . .
© 25+ Lo .. '°, et e .-.. e,
204
10 20 30 40 50
Period number
{b)

Fig. 3. Drifts in period obtained from figures similar to Fig. 2 for (a)
diode and (b) triode sputtering.

48 First
secondary Bragg
Top of 0
sample i pak peak
1cm |
Bottom
of
sample
0 1 2 3 4 5
2 X O (degrees)
(a)

) ~ —1000A _1000A c)

Fig. 4. (a) Lateral variation of layer thickness is observed in a photo-
graphic image of small-angle x-ray diffraction (6, = critical angle).
Notice the 48 secondary peaks between 6 and the first Bragg peak.
MTEM images of (b) top and (c) bottom of the sample shown in (a).
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Fig. 5. Effect of roughness artificially induced by the evaporation of
small {~10 to 30 A} Pt beads on the substrate. In this case the
roughness heals toward the top of the sample. Periodicity is 54 A.

the low-angle x-ray (CuK o) diffraction, Fig. 4(a). For this the
x-ray detector is replaced by a photographic plate that cap-
tures the variation of the x-ray intensity along the sample.
Note that the angle at which the multilayer peaks appear
varies continuously along the sample.

2.3. Roughness

The substrate or interfacial roughness also contributes to the
deterioration of the multilayer x-ray optics performance. To
illustrate the effect of substrate roughness on W/ C multilayer
deposition, we deposited small (~10 to 30 A) Pt balls on the
substrate. It is easy to see (Fig. 5) that the roughness tends to
heal toward the top of the sample, although this effect varies
from system to system. For this particular case it seems rea-
sonable to conclude that theamorphous carbon is responsible
for the smoothing effect. We have observed a similar behavior
when carbon was used as a buffer between a rough substrate
and a multilayer.

The effect of defects on the substrate (“substrate quality™)
and sample surface roughness can be observed in an image
obtained by transmission in the direction perpendicular to the
plane of the substrate and multilayer (Fig. 6). A detailed study
of the surface roughness using transmission electron micros-
copy has not been performed, and it is possible that better
height resolution can be obtained using scanning electron
microscopy.!?

The lower limit for the individual layer thicknesses is
limited to about 10 A in the case of W/ C. This is because the
individual layers are no longer continuous, as illustrated in
Fig. 7, although on the average a modulation is still present.

Adherence to the substrate and an interruption of the
multilayer preparation process can also be observed as addi-
tional breaks in the microcleavage.
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Fig. 6. Transmission image perpandlcuiar to the Iavers, showmg

substrate defects and surface roughness.
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Fig. 7. Island structure of thin (<10 A) W layers. Periodicityis 21 A.
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2.4. Structures observable

Cross section images can be used to observe clearly and
directly a large number of structures that are prepared using
thin-film techniques. For instance, Fig. 8 shows a W/C
Fabry-Perot structure,' and Fig. 9 shows a copper layer
sandwiched between a single-crystal Si substrate and a sput-
tered amorphous Si film. Table I lists the large variety of
structures for which the technique has been applied.

2.5. High resolution

A complete characterization of thin-film multilayered struc-
tures requires knowledge of the position of each atom in the
multilayer. This might be possible with crystalline super-
lattices. Figure 10 shows the use of high resolution electron
microscopy (HREM) with a Philips 420 microscope on a
C/W sample where the individual layers are amorphous. The
(111) planes of the silicon substrate give a directand accurate
scale for the transmission image; however, since the layersare
amorphous, atomic planes are not observed in the multilayer.

 15d

14d

? 100 nm
1

Fig. 8. Cross section of a Fabry-Perot structure showing well-

formzd continuous layers. The period is 32.5 A, and the C spacer is
480

Fig. 9. Crosssection of amorphousSn (420 A) fl!m and single-crystal
Si substrate with a thin Cu layer (40 A) sandwiched between.

This type of high resolution microscopy can be done routinely
with the latest generation of 400 kV microscopes. The main
advantage of the HREM of the substrate-multilayer combi-
nation is that the substrate atomic planes provide an internal
calibration scale, allowing accurate measurement of the layer
thickness.

2.6. Chemical mapping by electron energy loss spectroscopy

EELS has been used to perform chemical mapping of the
constituents.’S Figure 11 shows the chemical profile of the
carbon (top) and the tungsten (bottom) ina W/ C multilayer.
The annular dark field (ADF) gives the tungsten profile by
selecting electrons scattered at high angles. In such a pre-
liminary experiment, the spatial resolution is of the order
of 10 A

3. CONCLUSION

It is clear that the richness of variability in multilayer struc-
tures makes clectron microscopy ideally suited for their study.
Thisis especially true when the microcleavage combined with

OPTICAL ENGINEERING / August 1986 / Vol. 25 No. 8 / 951
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Fig. 10. Cross section using high resolution electron microscopy
with a Philips 420 microscope. The substrate provides an accurate
scale: 10dqq; = 31.5 A,

an analytical microscopy technique is compared with ordi-
nary diffraction techniques. The technique presented here is
limited to samples for which (a) a proper cross section can be
prepared, (b) the microcleavage does not affect the property
of the samples, and (c¢) the contrast is sufficient to allow the
formation of an image.
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